Understanding and Interpreting Pharmacokinetic (PK) and Pharmacodynamic (PD) Targets for Antimicrobial Dosing

Back to Basics – a reminder of PK/PD

PK describes the movement of drug through the body over time - influenced by its absorption, distribution, metabolism and excretion.

- Physiological factors which can influence this include gastrointestinal conditions, drug/food interactions, renal function, volume of distribution and the site of infection
- Drug factors which can influence this include lipophilicity of the drug, bioavailability and protein binding

PD is the study of effect (efficacy and toxicity) once the drug has reached a specified site of action. In the case of antimicrobials this is the ability to kill or inhibit antimicrobial growth once at the site of action.

Time-dependent versus Concentration-dependent activity

Different antimicrobials have different mechanisms of action and bactericidal activity characteristics. The efficacy of an antimicrobial is determined by a range of factors including activity and duration of effect at the site of infection (known as the PK-PD indice) and MIC as outlined below.

The PK-PD indices associated with antibacterial activity

- **Time (%T) > MIC** = Time-dependent antimicrobials
 - Effect depends on duration the unbound drug is at concentrations above the MIC
 - Increasing the frequency of dosing or giving via continuous infusion will increase %T > MIC
 - Increasing dose to achieve higher concentrations does not result in greater efficacy once it is above the MIC

- **AUC:MIC** = Concentration-dependent antimicrobials with time dependence
 - Effect is related to the AUC of the unbound drug from 0-24 hours and the MIC

- **Cmax:MIC** = Concentration-dependent antimicrobials
 - Greater killing achieved as the ratio of drug concentration (Cmax) to MIC increases within the therapeutic range
 - Changing the dose will mainly alter the Cmax:MIC and AUC:MIC ratio
 - Larger doses, less frequently improve chances of success
Pharmacodynamic index correlated with maximal efficacy of selected antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobial / Class</th>
<th>Effect</th>
<th>Distribution</th>
<th>Excretion</th>
<th>PK/PD Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-lactams (includes Carbapenems)</td>
<td>Bactericidal</td>
<td>Low protein binding + hydrophilic</td>
<td>Renal</td>
<td>Time > MIC</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Bactericidal</td>
<td>Hydrophilic</td>
<td>Renal</td>
<td>Cmax:MIC & AUC:MIC</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Bactericidal</td>
<td>Hydrophilic</td>
<td>Renal</td>
<td>AUC:MIC</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Bacteriostatic</td>
<td>Lipophilic wide distribution</td>
<td>Renal / Non-renal</td>
<td>AUC:MIC</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Bacteriostatic</td>
<td>Lipophilic wide distribution</td>
<td>Hepatobiliary</td>
<td>AUC:MIC</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>Bactericidal</td>
<td>Highly protein bound (weak, reversible) + hydrophilic</td>
<td>Renal</td>
<td>Cmax:MIC & AUC:MIC</td>
</tr>
<tr>
<td>Fluoroquinolones (e.g. ciprofloxacin)</td>
<td>Bactericidal</td>
<td>Lipophilic wide distribution</td>
<td>Renal & hepatobiliary</td>
<td>Cmax:MIC & AUC:MIC</td>
</tr>
</tbody>
</table>

Where should we be considering PK/PD?

Hypoalbuminaemia
- Leads to more unbound drug available causing temporarily higher drug concentrations
- Is usually associated with ↑ Vd & drug clearance of highly protein bound hydrophilic drugs so free drug is diluted through total body water and rapidly cleared
- Patients may need higher loading & maintenance doses of these antimicrobials

Renal Function
- Especially important for hydrophilic antimicrobials which are almost entirely renally cleared
- Vd increased in patients with moderate to severe CKD due to reduced protein binding, increased tissue binding +/or fluid overload
- Impact of dialysis on PK/PD depends on type of dialysis, molecular weight, protein binding and Vd of the drug

CNS Infections
- Penetration into CSF determined by molecular size, lipophilicity and protein binding
- ↑ in permeability of blood-CSF/blood brain barrier and ↓ in CSF flow leading to ↑ drug concentrations during inflammation

Critical Illness
- Multi-organ failure changes absorption, distribution, metabolism and excretion of drugs
- Changes to pH, protein binding and interstitial fluid shifts affects drug distributions especially of mainly hydrophilic drugs with low Vd

Obesity
- This will be covered in a future issue

Burns
- Area and depth of burn, presence of sepsis, dehydration & time since injury all affect PK
- Hypometabolic state in first 48hrs post burn due to reduced cardiac output & tissue perfusion & therefore decreased metabolism/clearance of drugs
- Hypermetabolic state after 48hrs resulting in ↑ cardiac output & tissue perfusion hence increased metabolism/clearance of drugs

References / Further reading:

Produced by the Central Adelaide Local Health Network (CALHN) Antimicrobial Stewardship Committee

Endorsed by the South Australian expert Advisory Group on Antimicrobial Resistance (SAAGAR) June 2018. Last reviewed and amended June 2018. SAAGAR has endeavoured to ensure that the information in this publication is accurate; however, it makes no representation or warranty to this effect. You rely on this publication at your own risk. SAAGAR disclaims all liability for any claims, losses, damages, costs and expenses suffered or incurred as a result of reliance on this publication. As the information in this publication is subject to review, please contact a medical or health professional before using this publication.